Extensions 1→N→G→Q→1 with N=C32 and Q=C8oD4

Direct product G=NxQ with N=C32 and Q=C8oD4
dρLabelID
C32xC8oD4144C3^2xC8oD4288,828

Semidirect products G=N:Q with N=C32 and Q=C8oD4
extensionφ:Q→Aut NdρLabelID
C32:1(C8oD4) = C24.63D6φ: C8oD4/C8C22 ⊆ Aut C32484C3^2:1(C8oD4)288,451
C32:2(C8oD4) = C24.64D6φ: C8oD4/C8C22 ⊆ Aut C32484C3^2:2(C8oD4)288,452
C32:3(C8oD4) = C24.D6φ: C8oD4/C8C22 ⊆ Aut C32484C3^2:3(C8oD4)288,453
C32:4(C8oD4) = D12.2Dic3φ: C8oD4/C2xC4C22 ⊆ Aut C32484C3^2:4(C8oD4)288,462
C32:5(C8oD4) = D12.Dic3φ: C8oD4/C2xC4C22 ⊆ Aut C32484C3^2:5(C8oD4)288,463
C32:6(C8oD4) = C3:C8.22D6φ: C8oD4/C2xC4C22 ⊆ Aut C32484C3^2:6(C8oD4)288,465
C32:7(C8oD4) = C62.(C2xC4)φ: C8oD4/D4C4 ⊆ Aut C32488-C3^2:7(C8oD4)288,935
C32:8(C8oD4) = C12:S3.C4φ: C8oD4/Q8C4 ⊆ Aut C32488+C3^2:8(C8oD4)288,937
C32:9(C8oD4) = C3xC8oD12φ: C8oD4/C2xC8C2 ⊆ Aut C32482C3^2:9(C8oD4)288,672
C32:10(C8oD4) = C24.95D6φ: C8oD4/C2xC8C2 ⊆ Aut C32144C3^2:10(C8oD4)288,758
C32:11(C8oD4) = C3xD12.C4φ: C8oD4/M4(2)C2 ⊆ Aut C32484C3^2:11(C8oD4)288,678
C32:12(C8oD4) = C24.47D6φ: C8oD4/M4(2)C2 ⊆ Aut C32144C3^2:12(C8oD4)288,764
C32:13(C8oD4) = C3xD4.Dic3φ: C8oD4/C4oD4C2 ⊆ Aut C32484C3^2:13(C8oD4)288,719
C32:14(C8oD4) = D4.(C3:Dic3)φ: C8oD4/C4oD4C2 ⊆ Aut C32144C3^2:14(C8oD4)288,805


׿
x
:
Z
F
o
wr
Q
<